Nanopores in solid-state membranes engineered for single molecule detection.

نویسندگان

  • V Dimitrov
  • U Mirsaidov
  • D Wang
  • T Sorsch
  • W Mansfield
  • J Miner
  • F Klemens
  • R Cirelli
  • S Yemenicioglu
  • G Timp
چکیده

A nanopore is an analytical tool with single molecule sensitivity. For detection, a nanopore relies on the electrical signal that develops when a molecule translocates through it. However, the detection sensitivity can be adversely affected by noise and the frequency response. Here, we report measurements of the frequency and noise performance of nanopores </=8 nm in diameter in membranes compatible with semiconductor processing. We find that both the high frequency and noise performance are compromised by parasitic capacitances. From the frequency response we extract the parameters of lumped element models motivated by the physical structure that elucidates the parasitics, and then we explore four strategies for improving the electrical performance. We reduce the parasitic membrane capacitances using: (1) thick Si(3)N(4) membranes; (2) miniaturized composite membranes consisting of Si(3)N(4) and polyimide; (3) miniaturized membranes formed from metal-oxide-semiconductor (MOS) capacitors; and (4) capacitance compensation through external circuitry, which has been used successfully for patch clamping. While capacitance compensation provides a vast improvement in the high frequency performance, mitigation of the parasitic capacitance through miniaturization offers the most promising route to high fidelity electrical discrimination of single molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Watching single proteins using engineered nanopores.

Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurem...

متن کامل

Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes.

Solid-state nanopores have emerged as versatile single-molecule sensors for applications including DNA sequencing, protein unfolding, micro-RNA detection, label-free detection of single nucleotide polymorphisms, and mapping of DNA-binding proteins involved in homologous recombination. While machining nanopores in dielectric membranes provides nanometer-scale precision, the rigid silicon support...

متن کامل

Chemically modified solid-state nanopores.

Nanopores are extremely sensitive single-molecule sensors. Recently, electron beams have been used to fabricate synthetic nanopores in thin solid-state membranes with subnanometer resolution. Here we report a new class of chemically modified nanopore sensors. We describe two approaches for monolayer coating of nanopores: (1) self-assembly from solution, in which nanopores approximately 10 nm di...

متن کامل

Solid-state nanopores for biosensing with submolecular resolution.

Biological cell membranes contain various types of ion channels and transmembrane pores in the 1-100 nm range, which are vital for cellular function. Individual channels can be probed electrically, as demonstrated by Neher and Sakmann in 1976 using the patch-clamp technique [Neher and Sakmann (1976) Nature 260, 799-802]. Since the 1990s, this work has inspired the use of protein or solid-state ...

متن کامل

Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores.

In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 2010